Machine-Learning based sequence analysis, bioinformatics & nanopore transduction detection

Stephen Winters-Hilt

University of New Orleans New Orleans, Louisiana & Meta Logos Inc. New Orleans, Louisiana

Copyright © 2011 by Stephen Winters-Hilt. All rights reserved.

ISBN 978-1-257-64525-1

Lulu Publication

Preface

This is intended to be a simple and accessible book on machine learning methods and their application in computational genomics and nanopore transduction detection. This book has arisen from the past eight years of teaching one-semester courses on various machine-learning, cheminformatics, and bioinformatics topics. Possible uses of this textbook in one-semester courses are as follows:

(1) Introductory Bioinformatics – an undergraduates level course covered in Ch.s 1-4, if not delving into the HMM derivations in Ch. 3 extensively. A more advanced one-semester Bioinformatics course, for senior undergraduates and graduate students, can be based on Ch.s 1-4 if the HMM derivations are pursued in detail.

(2) Introductory Machine Learning – a one-semester course on HMMs, SVMs, and their pattern recognition and structure discovery applications, at the senior undergraduate or graduate student level, can be based on Ch.s 1-3, 4.D, 5, 8, and 9.

(3) Introductory Stochastic Signal Analysis – a one-semester course on HMMs and SVMs and their signal processing applications, at the senior undergraduate or graduate student level, can be based on Ch.s 1-3, 5, 8, and 9.

(4) Introductory Nanopore Transduction Cheminformatics – a one-semester course on Nanopore Transduction Detection and related Channel Current Cheminformatics, at the senior undergraduate or graduate student level, can be based on Ch.s 1-3, and 5-7.

(5) Advanced HMMs -- a one-semester course on Hiddeen Markov Models, at graduate student level, can be based on Ch.s 1-3, 8, and 9.

(6) Advanced SVMs -- a one-semester course on Support Vector Machines, at graduate student level, can be based on Ch.s 1,2,5,9.

This book partly draws on material that the author that has published in open source journals, including material from the EURASIP Journal for Advanced Signal Processing [1,2], and from BMC Bioinformatics publications [3-18].

Stephen Winters-Hilt

New Orleans, March 2011

Acknowledgements

I'd like to thank the student collaborators and lab technicians I've worked with, and co-authored papers with, over the past eight years. In particular, I would like to thank lab technicians Amanda Alba, Amanda Davis, Andrew Duda, Iftekhar Amin, and, especially, Eric Morales, for help performing the nanopore experiments, and I'd like to thank a host of University of New Orleans and Tulane undergraduate, graduate, and postdoctoral students for help with the nanopore experiments and the channel current cheminformatics analysis. In recent efforts this includes Evenie Horton, Jorge Chao, Joshua Morrison, and in prior collaborations this includes:

Anand Prabhakaran (UNO; MS in CS, Fall 2005). Thesis title: Power Signal Analysis of Channel Current signal using HMM-EM and time domain FSA;

Alex Ortiz (Tulane; MS in Biomedical Engineering, Spring 2006). Thesis title: DNA Binding Characterization of Pseudo Aptamers using Nanopore Technology;

Raja Iqbal (Tulane; PhD in Computer Science, Spring 2006). Thesis title: Robust Learning Algorithms: Applications in Data Mining, Computer Vision and Bioinformatics;

Srikanth Sendamangalam (UNO; MS in CS, Summer 2006). Thesis title: Nanopore Detector Feedback Control Using Cheminformatics Methods Integrated with LabView/LabWindows Tools;

Charlie McChesney (UNO; MS in CS, Summer 2006). Thesis title: SVM-based Clustering;

Matthew Landry (UNO; MS in CS, Spring 2007). Thesis title: Analysis of Nanopore Detector Measurements using Machine Learning Methods, with application to single-molecule kinetics; Molly Oehmichem (Tulane; BS in Biomedical Engineering, Spring 2008). Thesis title: Distinction of Single Nucleotides for the purpose of DNA sequencing using a nanopore-based detector;

Kenneth Armond Jr. (UNO; MS in CS, Summer 2008). Thesis title: Distributed Support Vector Machine Learning;

Sepehr Merat (UNO; MS in CS, Summer 2008). Thesis title: Clustering via supervised support vector machines;

Daming Lu (UNO; MS in CS, Summer 2009). Thesis title: Motif Finding;

Hang Zhang (UNO; MS in CS, Summer 2009). Thesis title: Distributed Support Vector Machines with Graphical Processing Units;

Carl Baribault (UNO; PhD in CS, Fall 2009). Thesis title: Meta-state generalized HMMs for eukaryotic gene structure identification;

Zuliang Jiang (UNO; PhD in CS, Spring 2010). Thesis title: Binned HMM with duration: variations and applications;

Alexander Churbanov (Postdoc, 2006-2008); and

Alexander Stoyanov (Postdoc, 2006-2008).

I'd like to thank the University of New Orleans, NIH, NSF, NASA, and the Louisiana Board of Regents for research support. The author would also like to thank META LOGOS Inc., for research support and a research license.

META LOGOS INC. was co-founded by the author in 2009, when it obtained exclusive license to the nanopore transduction detector (NTD) and machine-learning based signal processing intellectual property. The author would like to thank Robert Adelman (CEO META LOGOS, Inc.), Andrew Peck (CEO PxBioSciences), and Mike Lewis (Professor, University of Missouri-Columbia), for discussion exploring the potential impact of the NTD approach. Prior to incorporation, Meta Logos was a sole-proprietorship, Meta Logos Systems, specialized in machine learning based signal processing, and was founded by the author in 1997 in Santa Cruz, CA.

Stephen Winters-Hilt

Contents

Lis	t of Figures	3	xix
Lis	t of Tables		xxv
1	Introducti	on	1
	1.B Suppor	stic Sequential Analysis via Hidden Markov Models et Vector Machines for Classification and Clustering ore transduction detection	2 4 5
2	Ad hoc sig	nal recognition using Information Theory	7
	2.A.1 2.A.2 2.A.3 2.A.4 2.A.5 2.A.6 2.A.7 2.A.8 2.A.9	Information measures Significant Distributions that are not Geometric Significant Series that are Martingale Markov Chains	7 8 9 9 10 10 10 10 10 12 12
	2.B Standar	rd Electrical Engineering signal analysis Tools	14

	2.B.1	Nyquist Sampling Theorem	15
	2.B.2	Fourier Transforms, and other Transforms	15
	2.B.3	Power spectral density (PSD)	15
	2.B.4	Cross-PSD	16
	2.B.5	AM/FM/PM Communications Protocol	16
	2.B.6	Phase-locked loop (PLL) Protocol	17
	2.C Ad Hoc	Methods	18
	2.C.1	Channel Current Cheminformatics (CCC) Protocol	18
	2.C.2	Finite State Automata (FSAs) with holistic tuning	19
	2.C.3	tFSA spike detector	29
	2.C.4	Mutual Information linkage identification	31
	2.C.5	Ab initio learning with holistic and bootstrap learning	32
	2.C.6	Comparative topological structure identification	34
	2.D Problem	ns	37
3	Analysis of	Stochastic Data using Hidden Markov models	41
	3.A Hidden	Markov model (HMM) Background	42
	3.A.1	When to use a Hidden Markov Model (HMM)?	47
	3.A.2	Weaknesses of the standard HMM	48
	3.B Hidden	Markov models and HMM-based feature extraction	52
	3.B.1	Viterbi Path	53
	3.B.2	Forward and Backward Probabilities	54
	3.B.3	HMM: Maximum Likelihood discrimination	55
	3.B.4	Expectation/Maximization	55
	3.B.5	Emission and Transition Expectations with Rescaling	56
	3.B.6	pMM/SVM	57
	3.B.7	Feature Extraction via EVA projection	58
	3.B.8	Feature Extraction via Data Absorption	59
	3.B.9	Modified AdaBoost for Feature selection and fusion	60
	3.B.1 0	HMM/Viterbi Code examples (in C)	64
	3.C Linear I		71
		ta-HMM – a clique-generalized HMM	73
		Semi-Markov model and HMM-with-duration	81
		vith binned duration	87
		ated HMM with possible GPU speedup	91
	3.H Problem	ns	93

Bioinformatics

4.A.Development of chemical replicators & info. structures	96
4.A.1 Formation of the Pre-Life Physical Environment	96
4.A.2 Formation of the Proto-Life Chemical Environm	nent and
the RNA Splice-World Hypothesis	97
4.A.3 Role of Viruses and other 'selfish' genomic eleme	ents 101
4.A.4 Role of Artefact	107
4.A.5 Encapsulated interactions and information struct	ures 108
4.B. Information encoding molecules and structures (genomes	s) 109
4.B.1 DNA	110
4.B.2 mRNA	111
4.B.3 Protein	112
4.B.4 Genomes	113
4.B.4.1 Virus Genomes	113
4.B.4.2 Prokaryotic Genomes	114
4.B.4.3 Eukaryotic Genomes	116
4.C. Bioinformatics Methods	119
4.C.1 Electrophoresis and GELs	119
4.C.2 PCR	120
4.C.3 DNA Sequencing	121
4.C.4 Expression analysis: DNA microarrays & RNA-s	eq 122
4.C.5 BLAST: sequence alignment	123
4.C.6 Phage Typing & Metagenomic Testing	124
4.D Computational Genomics	124
4.D.1 Meta-HMM for eukaryotic genome analysis	126
4.D.1.1 Primer on Genomic Data -C. elegans specific	cs 126
4.D.1.2 The meta-HMM model for genomic analysis	127
4.D.1.3 HMM states for gene-structure identification	132
4.D.1.4 Measures of Predictive Performance	136
4.D.1.5 Meta-HMM Results	137
4.D.2 HMMBD+pde+zde Eukaryote	145
4.D.2.1 ZoneDependent Emission (ZDE) modeling	145
4.D.2.2 HMMBD+pde+zde analysis on C. elegans	148
4.D.3 Preliminary Alt-splice model	152
4.D.3.1 Two-track alt-splice gene finder model	152
4.D.3.2 Statistical support for Alt-splice two-track me	
4.E Problems	155

5 Classification & Clustering using Support Vector Machines 157

5.A	Decisio	n Boundary and SRM Construction using Lagrangian	158
	5.A.1.	The theory of classification	162
	5.A.2.	Kernel modeling and other Tuning	164
	5.A.3	Kernel construction using polarization	165
	5.A.4	Support Vector Machine Lagrangian formulation	168
5.B	SVM K	ernels	173
	5.B.1	The 'stable' kernels	176
	5.B.2	Entropic and Gaussian Kernels	179
5.C	SVM of	otimization using SMO and alpha-selection heuristics	180
	5.C.1	Sequential Minimal Optimization (SMO)	180
	5.C.2	Code Samples	184
	5.C.3	Adaptive Feature Extraction/Discrimination	192
	5.C.4	Robust SVM performance in the presence of noise	193
5.D	Multicla	ass SVM	193
	5.D.1	SVM-External Multiclass	194
	5.D.2	SVM-Internal Multiclass	195
	5.D.3	SVM Speedup via differentiating BSVs and SVs	197
5.E	.SVM C	hunking and Tuning	199
	5.E.1	Tuning	200
	5.E.2	SVR Method	200
	5.E.3	Chunking Protocols	201
	5.E.4	Chunking Pathologies	202
	5.E.5	SVM Distributed processing with GPU/CPU	203
5.F	Data-re	jection heuristics	204
	5.F.1	Data Rejection Tuning	204
	5.F.2	Marginal Drop with SVM-Internal	206
5.G	SVM C	lustering	206
	5.G.1	SVM 'Internal' Clustering	208
	5.G.2	SVM-External Clustering	211
	5.G.3	SVM-External Clustering – Algorithmic Variants	224
	5.G.4	Binary classifier & clustering scoring conventions	229
5.H	5.H Problems 2		

6	Single-molecule Biophysics and Nanopore Detection	233

6.A	Protein	Channel Electrochemistry and Biophysics	233
	6.A.1	Thermodynamics in Biophysics	233
	6.A	A.1.1 Equilibrium	234
	6.A	A.1.2 Non-equilibrium	234
	6.A	A.1.3 Fluid Flow	235
	6.A	A.1.4 Absolute Reaction Rate	235
	6.A.2	Simple ions in solution	236
	6.A	A.2.1 Water Clustering	237
	6.A	A.2.2 Hydration Radius	237
		A.2.3 Debye Radius	237
	6.A.3	DNA and polymer ions in solution	238
	6.A	A.3.1 DNA Structure from crystallography and NMR	238
		A.3.2 Discerning Structure of Duplex Ends	239
	6.A.4	Membranes and channels	239
	6.A	A.4.1 Nanopores in Lipid Bilayers	240
	6.A	A.4.2 The highly stable, α -hemolysin protein channel	242
		A.4.3 Membrane Environment in Biosensing	243
	6.A.5	The Coulter Counter	244
	6.A.6	Partitioning and Translocation in Channels	245
	6.A	A.6.1 The Free Energy Barrier	245
	6.A	A.6.2 ssDNA partitioning/translocation in α -HL	246
		A.6.3 Temperature effects	247
	6.A.7	Forces acting on polymers in a nanopore	247
	6.A.8	Engineered and Synthetic Channels	250
6.B	Nanop	ore Detector Biophysics	251
	6.B.1	Protein Channel Electrochemistry Environment	251
	6.E	3.1.1 Standard and physiological buffer conditions	251
		3.1.2 α -Hemolysin stability – use of chaotropes	251
		3.1.3 The Nanopore Detector Voltage Clamp Circuit	251
		3.1.4 Nanopore Detector Electronic Noise Sources	252
		B.1.5 Controlling α -HL Noise via Choice of Aperture	256
	6.B.2	Nanopore Detector Blockade Sensing	258
		3.2.1 The α -HL nanopore blockade detector	258
		3.2.2 Nanopore biosensor single-signal saturation	261
		3.2.3 Nanopore Detector Membrane Stability	262
		3.2.4 Bandwidth limitations	262
		3.2.5 Sticking problem and use of Excitations	264
		3.2.6 Other Single Molecule Methods	266
	6.B.3	Mechanism of modulatory channel blockades	265

	6.B.3.1 The 9bp hairpin blockade mechanism 6.B.3.2 Conformational Kinetics on Model Biomolecules	265 267
	6.C Summary of translocation time ND biosensing methods	268
	6.D Things to 'contact' with the channel other than ssDNA	269
	6.D.1 Aptamers	269
	6.D.2 Bifunctional Immunoglobulins	270
	6.E Channel Current Cheminformatics (CCC) Methods	271
	6.F Problems	272
7	The Nanopore Transduction Detector 'Nanoscope'	273
	7.A NTD Background	275
	7.A.1 Nanopore Transduction Detection	277
	7.A.2 Bifunctional NTD aptamers	278
	7.A.3 Potential Impact	278
	7.B NTD Platform and Operation	280
	7.B.1 NTD Operational Protocol	282
	7.B.2 Driven modulations	286
	7.B.3 Driven modulations with multichannel	289
	7.C NTD Biosensing Methods & Proof of Concept Results	290
	7.C.1 Model system based on streptavidin and biotin	290
	7.C.2 Model system based on DNA annealing	293
	7.C.2.1 (preliminary) linear DNA annealing test	295
	7.C.2.2 (preliminary) 'Y' DNA annealing test	286
	7.C.3 Pathogen Detection	297
	7.C.4 SNP Detection	298
	7.C.5 Aptamer-based Detection	302
	7.C.6 Antibody-based Detection	302
	7.C.6.1 Small target Antibody-based detection 7.C.6.2 Large target Antibody-based detection	303 305
	7.D NTD Assaying Methods & Proof of Concept Results	308
	7.D.1 DNA enzyme analysis: Integrase	308
	7.D.2 Single-molecule serial assaying	311
	7.D.2.1 Glycoprotein assayer	311
	7.D.2.2 Antibody Assay: A window into Ab function	313

	7.D	0.2.3 Multicomponent Molecular Analyzer	314
	7.D.3	Molecular capture & TERISA	315
	7.D.4	NTD-Gel	317
	7.D.5	Nanopore Processing Unit (NPU)	317
	7.D.6	Immunological Screening using CCC	318
	7.D.7	Assays of cytosolic antigen delivery complexes	319
		Application Areas	319
	7.E.1	Nanopore Transduction Platform and Carrier Signal	
	7.E.2	Model systems for NTD Assaying: Aptamer-TBP	320
	7.E.3	Deciphering the Transcriptome & Drug Discovery	322
	7.E.4	DNA Sequencing	323
	7.E	.4.1 Single-molecule, processive	323
	7.E	.4.2 NTD/Sanger DNA Sequencing	327
	7.F List of I	NTD Proof-of-concept Experiments	328
	7.G Problem	ns	333
8	Stochastic	sequential analysis, classification, & clustering	335
	8.A Stochas	tic Sequential Analysis (SSA)	335
	8.A.1	CCC implementation of the SSA protocol	336
	8.A.2	NTD: a binary stochastic 'phase' modulation	336
	8.B The SS	A Protocol	339
	8.C SCW fo	or boosting and secure, hidden, communications	348
	8.C.1	NTD with multiple channels (or high noise)	350
	8.C.2	Stochastic Carrier Wave	352
	8.D Problem	ns	356
9	Machine-L	earning based Computational Science	357
	9.A Model	Tuning Metaheuristics and Model Selection Methods	357
	9.A.1	Gradient Ascent	358
	9.A.2	Steepest Ascent Hill Climbing	359
	9.A.3.	Simulated Annealing	361
	9.A.4	Taboo Search	362
	9.A.5	Population-based metaheuristics	363
		.5.1 Population with evolution	363
	9.A	.5.2 Population with swarm intelligence	365

	0.A.5.3 Indirect Interaction via Artifact	365
9.A	5 Problems	366
9.B Les	ons from physics: The Calculus of Variations	367
9.B		367
9.B	2 Physics & Statistics	369
9.B	3 Inference via maximum entropy	371
9.B	17	372
optimiz	clusion: the fundamental role of machine-learning base tion methods and representative in computational scie	
and eng	heering	5/5
Bibliograp	у	375

399